Response of maize (Zea mays L.) hybrids to different levels of nitrogen

Reena Sharma1*, Parbati Adhikari1, Jiban Shrestha2 and Binod Prasad Acharya1

1National Maize Research Program, NARC, Rampur, Chitwan, NEPAL
2Agriculture Botany Division, NARC, Khumaltar, Lalitpur, NEPAL
*Corresponding author’s E-mail: reenanarc@gmail.com

INTRODUCTION

Maize (Zea mays L.) is second most important crop of Nepal after rice. It is grown in 0.9 million ha with the production of 2.3 million ton (t) and Productivity of 2.56 t/ha (MOALD, 2018). Ecologically, it is commonly cultivated in terai, mid hills and high hills as well. Maize is mostly grown under rain fed conditions and mostly on marginal land with very little use of commercial fertilizers. Spring maize can be incorporated in a most common rice wheat cropping system in lowland conditions. It is generally harvested for green cob and get economic return and to utilize time between wheat harvesting and rice planting. The productivity of maize is largely dependent on its nutrient management. Among the fertilizers, nitrogen (N) is very important because this element is responsible on major activities for growth and development of maize crop (Jat et al., 2013). The use of N-fertilizers along with other nutrients has been suggested to enhance the crop productivity (Marschner, 1995). The response of maize plant to application of N fertilizers varies from variety to variety, location to location and also depends on the availability of the nutrients (Onasanya et al., 2009). Previous findings indicated that the increase in maize grain yield after nitrogen fertilization is largely due to an increase in the number of ears per plant, increase in total dry matter distributed to the grain and increase in average ear weighing (Nxumalo et al., 1993). The nitrogen affects various physiological and biochemical processes in plant cells and, ultimately, affects growth and development (Brady, 1990). A higher level of Nitrogen (180 kg N/ha) improved seed
yield to 2.85 t/ha of inbred (NML-1) maize (Adhikary and Adhikary, 2013). Nitrogen response by maize differs due to growth stages, environment and genotype of maize. Hybrid and improved maize varieties are more nitrogen-responsive than local varieties of maize (Shrestha et al., 2018a). Grain yield, days to flowering, plant height, ear height, kernel rows per ear, no. of kernels per row, ear length and thousand grain weight significantly affected due to growing seasons and split applications of nitrogen (Adhikari et al., 2016). The application of nitrogen significantly increased the physiological growth indices of maize hybrids (Abubakar et al., 2019). The information on optimum rate of nitrogen on hybrid maize was not sufficient in Nepal. Therefore, this study was carried out to determine the effect of various levels of nitrogen application on grain yield and yield attributing traits in hybrid maize during spring season.

MATERIALS AND METHODS

Experimental site

The experiments were carried out at the research field of National Maize Research Program (NMRP) Rampur, Chitwan in the spring season from March to June of the years of 2017 and 2018. Geographically the experimental site is located at 27° 37’ North Latitude and 84° 29’ East longitude at an altitude of 225 meter above sea level (Kandel et al., 2017). This site contains only sandy loam soil with acidic reaction. This research location is characteristics of subtropical climate. The plant materials were collected from NMRP, Rampur, Chitwan, Nepal. Maize can be grown throughout the year in Chitwan district and can also be grown in other similar environments (Govind et al., 2015). The weather parameters recorded during the field experiments was given in Table 1.

Table 1. Weather data of experimental site during maize growing period at Rampur, Chitwan, Nepal in spring seasons of 2017 and 2018.

<table>
<thead>
<tr>
<th>Month/year</th>
<th>Max. Temp (°C)</th>
<th>Min. Temp (°C)</th>
<th>Rainfall (mm)</th>
<th>Relative humidity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 2017</td>
<td>26.91</td>
<td>10.38</td>
<td>3.40</td>
<td>92.51</td>
</tr>
<tr>
<td>March 2017</td>
<td>29.58</td>
<td>13.45</td>
<td>64.50</td>
<td>87.08</td>
</tr>
<tr>
<td>April 2017</td>
<td>33.46</td>
<td>18.77</td>
<td>77.60</td>
<td>88.17</td>
</tr>
<tr>
<td>May 2017</td>
<td>34.77</td>
<td>21.29</td>
<td>86.30</td>
<td>86.81</td>
</tr>
<tr>
<td>June 2017</td>
<td>35.39</td>
<td>24.83</td>
<td>179.70</td>
<td>90.03</td>
</tr>
<tr>
<td>February 2018</td>
<td>26.40</td>
<td>12.64</td>
<td>0.00</td>
<td>86.83</td>
</tr>
<tr>
<td>March 2018</td>
<td>32.62</td>
<td>17.99</td>
<td>26.00</td>
<td>70.60</td>
</tr>
<tr>
<td>April 2018</td>
<td>34.48</td>
<td>22.27</td>
<td>35.10</td>
<td>68.07</td>
</tr>
<tr>
<td>May 2018</td>
<td>34.32</td>
<td>24.98</td>
<td>137.70</td>
<td>75.63</td>
</tr>
<tr>
<td>June 2018</td>
<td>35.16</td>
<td>26.55</td>
<td>212.20</td>
<td>82.85</td>
</tr>
</tbody>
</table>

(Source: NMRP, 2017; NMRP, 2018).

Plant materials

Two pipeline hybrids RML-86/RML-96 and RML-95/RML-96 were used in this study. The plant materials were derived from National Maize Research Program (NMRP) Rampur, Chitwan, Nepal.

Experimental detail and field trial management

The experiments were conducted in two factorial randomized complete block design (RCBD) with three replications. Two hybrids (RML-86/RML-96 and RML-95/RML-96) and five levels of nitrogen (120, 150, 180, 210 and 240 kg N/ha) were used in these experiments. The hybrids were planted in the spacing of 60 cm × 25 cm. The plot size was 3.6 cm × 5 cm used for the cultivation. The irrigation system was rainfed. Farm Yard Manure (FYM) was applied as 10 t/ha as recommended. The treatments were allotted according to the recommended phosphorus and potassium for maize (60:40 kg P$_2$O$_5$: K$_2$O/ha. Phosphorus and potassium were applied at the rate of 60 kg/ha and 40 kg/ha respectfully. Half of the Nitrogen and full phosphorus and potassium were applied at the basal dose. Other crop management practices were carried out as per recommendation of National Maize Research Program (NMRP) Rampur, Chitwan, Nepal.

Data collection and statistical analysis

Grain yield of maize was estimated using formula adopted by Carangal et al. (1971) and Shrestha et al. (2018b) by adjusting the grain moisture at 15% and converted to the grain yield kg per hectare. The analysis of variance was performed using RCBD design to derive variance components derived using GenStat statistical package (12th edition) (Payne et al., 2009). The mean comparisons among treatment means were estimated by the least significant difference (LSD) test at 5% levels of significance (Gomez and Gomez, 1984; Baral et al., 2016).
RESULTS AND DISCUSSION

Different yield attributing parameters like grain yield (t/ha), numbers of cob/ha and thousand grain weights (g) of maize were estimated for each varieties in both years. The results are presented in Tables 2, 3 and Figure 1.

Yield and yield attributes of maize in 2017

Grain yield (t/ha)

Hybrid maize is a heavy feeder and more responsive to nutrients (Sarkar et al., 2000). Muza et al. (2004) and Shrestha et al. (2018a) found that the commercial maize hybrids require high nitrogen levels and fertile soils and hybrids are more responsive to nitrogen fertilizer. In the year 2017, both the hybrids RML86/RML96 and RML95/RML96 produced the highest yield of maize with the use of 150 kg N/ha. The yield of hybrid RML86/RML96 maize was highest (10.5 t/ha) with the application of 150 kg N/ha and that was lowest (8.81 t/ha) with the use of nitrogen 240 kg N/ha. At the same time, RML95/RML96 produced the highest yield of 10.5 t/ha with application of 150 kg N/ha and the least yield of 9.18 t/ha with application of 240 kg N/ha.

Number of cobs/ha

The highest number of cobs per hectare of maize found in hybrid RML86/RML96 was 69347 cobs/ha with application of 150 kg N/ha and number of cobs/ha for RML95/RML96 was 73722 cobs/ha. These findings are in agreement with those of Bakht et al. (2007), Abbas et al. (2005) and Khan et al. (2014) who reported that numbers of cobs/plant of maize increased with increased in nitrogen rates as compared to control and other treatments.

Table 2. Yield and yield components of hybrid maize under different rates of nitrogen fertilizer at Rampur, Chitwan, Nepal in spring season of 2017.

<table>
<thead>
<tr>
<th>Nitrogen levels (kg N/ha)</th>
<th>Grain yield (t/ha)</th>
<th>Number of cobs/ha</th>
<th>Thousand grain weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RML86/ RML96</td>
<td>RML95/ RML96</td>
<td>Mean</td>
</tr>
<tr>
<td>120</td>
<td>9.96</td>
<td>10.07</td>
<td>10.2</td>
</tr>
<tr>
<td>150</td>
<td>10.5</td>
<td>10.5</td>
<td>10.5</td>
</tr>
<tr>
<td>180</td>
<td>9.53</td>
<td>9.76</td>
<td>9.67</td>
</tr>
<tr>
<td>210</td>
<td>9.94</td>
<td>9.41</td>
<td>9.67</td>
</tr>
<tr>
<td>240</td>
<td>8.81</td>
<td>8.99</td>
<td>8.99</td>
</tr>
<tr>
<td>Grand mean</td>
<td>9.75</td>
<td>9.83</td>
<td>9.79</td>
</tr>
<tr>
<td>F-test</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV%</td>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD (0.05) Nitrogen</td>
<td>0.841</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD (0.05) Nitrogen x Variety</td>
<td>1.190</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NS = non-significant at 5% level of significance, *=Significant at 5% level of significance.
Number of cobs/ha
Various nitrogen levels affected the number of cobs/ha. The highest number of cobs i.e. 94722 and 90000 cobs/ha of maize were produced by hybrids RML95/RML96 and RML86/RML96, respectively with application of 150 kg N/ha

Thousand grain weight (g)
The maximum thousand grain weight of maize obtained from RML86/RML96 was 403.3 g with the use of 150 kg N/ha and that trait from RML95/RML96 was 432 g with the application of 150 kg N/ha. Such positive role of nitrogen in enhancing the test weight of maize is also recorded by Arif et al. (2010) and Salam et al. (2010). The pooled analysis (2017 and 2018) showed that highest grain yields of 9.0 and 9.1 t/ha were produced by hybrid RML86/RML96 and RML95/RML96, respectively with use of 150 kg N/ha (Figure 1).

The results of this experiment indicated the positive response of various yield attributes of maize to higher nitrogen fertilization that was accordance findings of several researchers (Chillar and Kumar, 2006; Bindhani et al., 2007; Gosavi and Bhagat, 2009; Prodhan et al., 2007) who found the higher green cob yield with application of higher nitrogen. They noticed nitrogen had its profound influence on vegetative and reproductive growth of the crop. Yield attributes of maize increased with increased rates of N might be due to the fact that application of nitrogen to the maize plants maintained greenness of leaves for longer period which in turn helped in greater dry matter accumulation and this might have contributed much as a major source for the development of sink and thereby improved the yield attributes (Asaduzzaman et al., 2014)

Conclusion
Nitrogen fertilizer application had profound effects on grain yield and yield attributing traits of maize hybrids. The application of nitrogen fertilizer at the rate of 150 kg/ha increased the grain yield and yield attributing traits namely number of cobs/ha and thousand grain weight in both hybrids RML86/RML96 and RML95/RML96 in 2017 and 2018. Therefore, the use of this level of nitrogen is beneficial to get the higher maize production.

ACKNOWLEDGEMENTS
The authors were thankful to National Maize Research Program (NMRP), Rampur, Chitwan, Nepal for providing research field, planting materials, financial and technical supports for these experiments.
Conflict of interest
All the authors would like to declare that there is no conflict of interest among them that could possibly arise in future.

Open Access: This is an open access article published under the terms and conditions of Creative Commons Attribution-NonCommercial 4.0 International License which permits non-commercial use, distribution, and reproduction in any medium, provided the original author(s) if the sources are credited.

REFERENCES