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 Based on the multiple regression model the impacts of rainfall and temperature on maize (Zea 

mays L.) yields in Mbeya region have been analyzed. Overall, findings revealed that the seven 

selected variables, that is, January maximum temperature, February maximum temperature, 

April maximum temperature, Rainfall from February to April, Rainfall during growing season, 

December rainfall and October maximum temperature influenced maize yields in the region 

by 65.4%. Diversely, the results showed 34.6% wasn’t explained by the model, meaning that 

there are other factors apart from temperature and rainfall could be used to explain the varia-

tion of maize (Z. mays) yield in the region. Furthermore, taking 1990 -2012 as baseline period, 

the model projection for a period of 2020-2042 shows that maize (Z. mays) yield may change 

from 1.5% to 2.3%, 2.6% to 3.6% and 2.4% to 3.5 %, as a result of separate future influence of 

10% decrease in rainfall, 10C raise in temperature and combined influence of both tempera-

ture and rainfall change, respectively. Nevertheless, the findings from this study, reveals that 

Mbeya region may still be potential maize (Z. mays) growing region in the prescribed period 

provided the magnitude change of both future rainfall and temperature hold and other factors 

not explained by the model do not change significantly. Therefore, the government must focus 

to conduct more research on uses of appropriate maize (Z. mays) varieties to obtain the  

maximum maize (Z. mays) crop yield in the region. 
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INTRODUCTION  

 

A better understanding of the impacts of climate change and 

variability on crop yields to a stakeholder in the agricultural 

sector is of vital importance for proper planning in farming prac-

tices. One of the useful ways in enhancing such understanding is 

the use of models related results. Statistical and process based 

models are prominent in anticipating the effects of climate 

change and variability on crop production. Process based  

models usually simulate crop responses to specific weather, soil, 

management and crop factors governing agricultural productivi-

ty (White et al., 2011). Despite of their contribution in examining 

the effects of climate change on agricultural productivity, there 

are some limitations associated to these models. For instance, 

the models are calibrated for individual sites and are assumed to 

be accurate to simulate crop responses over that particular site 

(Lobell and Field, 2007). Furthermore, the scarcity of reliable 

data on weather, soil and management limits the use of models 

as an extensive predictive tool in evaluation as well as  for plan-

ning and thus models have ended up providing only ‘best-guess’ 

estimates  (Jones et al., 2003; Schlenker and Roberts, 2009). 

Statistical models employ historical data on crop yields and  

climate to develop statistical relationships. The main  

advantages of these models are on their limited dependence on 

field calibration data, transparence during model uncertainties 

assessment through the use of coefficients of determination and 

confidence intervals as well as their usefulness at large spatial 

scales. However, absence of adaptation responses in examining 
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the future crop response projection is one of the limitations of 

statistical models; for instance, changes in varieties grown, 

planting and harvesting dates, and so on, are not taken into  

account (Lobell and Burke, 2010).  

Different studies conducted to investigate the impact of climate 

change on crop production in Tanzania have reported mixed 

relationship between climate change and variability on crop 

production. Lema et al. (2014) reported the existence of positive 

relationship between rainfall and maize and beans; and negative 

relationship between temperature and maize and beans. Haji 

(2013) identified a positive   correlation between rainfalls, mean 

minimum temperature and maize yield, but maximum tempera-

ture showed a negative relationship. Mongi et al. (2012); 

Mndeme (2016) and Majule (2015) reported that climatic varia-

bles, especially change of rainfall and temperature lead to the 

reduction of crop production. Rowhani et al. (2011), applied 

CERES (Crop Environment Resource Synthesis) model to exam-

ine the ability of statistical models to predict yield responses to 

changes in mean temperature and precipitation. The results 

reveal that both models projected maize yields decrease. This 

study assesses the impacts of rainfall and temperature variation 

on maize yields in Mbeya region in Tanzania using multiple  

regression model. The choice of the model is linked to the  

availability and nature of the data as well as transparence in 

assessing the model.  Mbeya region is chosen as a case study 

area because; the region is the biggest maize producer in the 

country (URT, 2007). Maize (Zea mays L.) in the region as well as 

in the country is a major staple food, most marketed crop, and 

determinant of the national maize surplus.  Furthermore, to the 

best knowledge of authors, there is no single study which has 

been conducted in the study area to assess the combined future  

impacts of rainfall and temperature variation on maize (Z. mays) 

yields using multiple regression models. 

 

MATERIALS AND METHODS 

 

Collection of data 

The secondary data used in this study were collected from the 

Ministry of Agriculture and Cooperatives, Ministry of  

Livestock and Fisheries Development and Tanzania  

Meteorological Agency (TMA). The meteorological and maize 

(Zea mays L.) yield data included monthly rainfall and rainfall 

during growing season, minimum and maximum temperatures 

as well as maize (Z. mays) yields in Mbeya region. Time series 

data (1990 -2012) covered 23 years were used for this study. 

Table 1, shows the variables used in the study, namely,  

observed maize (Z. mays)yields (OMY) as response variable and 

explanatory variables were January maximum temperature 

(Tjanmax), February maximum temperature (Tfebmax), April 

maximum temperature (Taprmax), Rainfall from February to 

April (Rfa), Rainfall during growing season (Rgs), December 

rainfall (Rdec) and October maximum temperature (Toctmax). 

Table 1, shows the climatic and maize (Z. mays) yields data used 

in the study area. 

 

About the study area 

Mbeya region lies between latitude 7° and 9°31’ south of the 

equator and between longitude 32° and 35° east of Greenwich. 

The region lies at an altitude of 500 metres above sea level with 

high peaks of 2981 metres above sea level at Rungwe higher 

attitudes. The region shares borders with countries of Zambia 

and Malawi to the South; Rukwa Region to the West; Tabora and 

Singida Regions to the North; while Iringa region lies to its East 

(URT, 2007). In 2015 Mbeya region was divided into two regions 

of Mbeya and Songwe. The region usually receives rainy from 

October to May ranging from 650mm to 2600 mm per annual 

while dry season starts from June to September. The region also 

experiences the temperatures range from about 16°C in the 

highlands to 30°C in the lowland areas (Figure 1) (URT, 2007).  

Southern highland zone in the major maize (Z. mays) producer, 

accounting for about 33% of the total maize production in the 

country. Mbeya region alone accounts for 11% of the  

maize produced in the zone (AGPTAP, 2015). Maize (Z. mays) in 

Mbeya region is both a major staple food and most marketed 

crop (in volume terms). This being the case, maize (Z. mays) is  

of vital importance to the region considering its level of  

production as well as an important determinant of the national 

maize surplus. 

Figure 1. Depicts major maize production regions in Tanzania, including the study area (Source: Luhunga, 2017). 
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Regression model development 

 

Model assumptions 

In developing the multiple regression model to be used in  

predicting the impacts of future rainfall and temperature  

variation on maize (Z. mays) yields in Mbeya region, we first 

check the assumptions for multiple linear regression model. 

 

Linearity assumption 

The linearity assumption requires that the relationship between 

the dependent variable and independent variables is linear.  

Garson (2012) suggests that a proper method detect linearity is 

to run regression analysis.  

In this study, if there is a significant linear relationship between 

the independent variables (climatic variables), xi, i=1,…….,7 and 

the dependent variable (maize yield), yj , i=1,…, 23, the slope will 

not equal zero. The null hypothesis therefore states that the 

slope is equal to zero, and the alternative hypothesis states that 

the slope is not equal to zero. Table 2 indicates the results from 

analysis of variance for the test of goodness of fit of the model 

at significance level of 5%.  

Analysis of Variance (ANOVA) (Table 2) indicates that p-value 

(0.011) < 0.05, in this case null hypothesis is rejected. The test 

provide evidence that the linear relationship between maize 

yields and January maximum temperature, February maximum 

temperature, April maximum temperature, rainfall from Febru-

ary to April, rainfall during growing season, December rainfall 

and October maximum temperature exists. 

Normality assumption  

 Normality assumption considers that variables have normal 

distributions. When the variables are not normally distributed, 

they can distort relationships and significance tests (Osborne 

and Waters, 2002). Shapiro-Wilk test is useful in examining the 

normality assumption whereby comparison is done between pre

-assigned significance level and Shapiro-Wilk Test value. 

Shapiro-Wilk test is used when the sample size is less than 2000 

(Shapiro and Wilk, 1965). If the significance value of the Shapiro

-Wilk test is greater than the pre-assigned significance level 

then the data is normal, and once it is below the pre – assigned 

significance level then the data significantly deviate from a  

normal distribution. The p-values of dependent and independ-

ent variables using Shapiro –Wilk test are shown in Table 3. 

The Shapiro - Wilk p- value for each variable is greater than 

0.005 (Table 3). The test suggests that the residuals are approxi-

mately normally distributed, meaning that the normality  

assumption is met. Therefore the variables used in this study are 

normally distributed. 

 

Independence of errors assumption 

This assumption requires that the regression model errors are 

independent; that is, the error terms are uncorrelated for any 

two observations (Mooi and Sarstedt, 2011). DW test is a  

prominent statistic test used in testing for the occurrence of 

serial correlation between residuals.  The value of DW statistics 

ranges between 0 and 4. DW value below 1.5 or larger than 2.5 

indicates a problem. We apply DW to test this assumption.  

Table 1. Depicts the climatic and maize (Z. mays) yields data used in the study.  

Year 
  OMY 

(tanne/ha) 
Tjanmax 

    (0C) 
    Tfeb 
    (0C) 

Taprmax 
    (0C) 

   RFA 
   (mm) 

  RGS 
  (mm) 

  Rdec 
   (mm) 

Toctmax 
     (0C) 

1990 1.80 23.2 23.7 23.6 318.5 697.5 202.4      27.4 

1991 1.90 23.2 24.5 23.5 390.5 797.2 215.8      25.6 

1992 2.40 24.1 23.8 23.5 390.1 768.9 137.8       26.8 

1993 1.70 22.6 23.2 23.1 428.9 846.3 20.4 26.6 

1994 1.70 23.9 22.9 23.0 446.9 826.2 110.8 26.7 

1995 1.70 23.7 23.1 23.3 507.3 881.5 106.6 27.6 

1996 1.70 23.6 23.0 23.2 504.2 1061.9 235.9 27.5 

1997 1.70 24.5 23.2 23.3 423.5 992.3 372.4 26.7 

1998 1.90 23.4 23.4 23.4 442.0 743.2 76.6 27.0 

1999 1.40 22.7 24.9 23.4 449.8 948.3 144.7 25.8 

2000 2.00 24.0 23.9 23.6 461.2 918.1 252.6 27.1 

2001 2.30 22.2 23.6 23.5 305.1 846.6 174.5 25.9 

2002 1.20 22.8 24.0 23.4 396.1 766.1 153.9 27.3 

2003 2.00 23.9 25.1 23.6 321.7 772.5 162.3 27.4 

2004 2.30 24.6 23.9 23.4 388.3 896.6 286.9 26.7 

2005 2.20 23.9 25.6 23.7 315.2 641.3 112.9 27.1 

2006 2.00 24.8 24.6 23.0 369.3 991.6 319.6 27.7 

2007 1.80 23.6 24.1 23.4 352.2 842.4 209.1 27.0 

2008 2.20 23.3 23.3 23.4 432.7 905.5 167.4 27.3 

2009 2.20 24.4 23.5 23.3 443.4 897.6 160.7 27.8 

2010 1.90 24.6 24.2 23.4 400.8 677.3 93.1 28.1 

2011 1.80 24.5 24.2 23.6 453.1 1058.4 356.3 27.3 

2012 1.80 24.4 25.4 23.6 283.1 695.4 187.3 28.2 
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The model summary for this study indicates that the values of R, 

R square, Adjusted R square, Standard error of the estimate and 

DW are 0.809, 0.654, 0.493, 0.2065 and 1.953 respectively. The 

DW statistic is 1.953 which is between 1.5 and 2.5, in this case 

the data is not autocorrelated, implying that independence  

assumption is met and errors associated with the data used in 

this study are uncorrelated. 

 

Homoscedasticity assumption 

 Homo (equal) scedasticity (spread) is the assumption that the 

error variance denoted by  is equal for all observations. On the 

other hand, heteroskedasticity is the violation of the homosce-

dasticity assumption. Gelfand (2013) asserts that when this 

happens, the OLS estimates become inefficient, the regular 

standard errors of these estimates are wrong, leading to incor-

rect inferences. According to Chong (1993) the assumption of 

homogenous variance of residuals is highly affected by outliers 

because of large residuals. In this study we use the Glejser test 

method which is applied by performing the regression analysis 

and use the absolute residuals from the regression to test for 

the heteroskedasticity assumption. 

The multiple regression equation relating the residuals and the 

climatic variables is given by; 

 

 

 

 

 

 

 

 

 

 

 

 

If the significant value of each of the explanatory variable is 

greater than the significant level (α), then, the null hypothesis is 

accepted (there is no problem of heteroskedasticity). On the 

other hand, if the significant value of each of the explanatory 

variable is greater than the significant level (α), the null hypoth-

esis is rejected (there is problem of heteroskedasticity). The p- 

value (from Table 4) of each of the residual parameters X1 

through X7 is greater than a preassigned significance level of 

0.005. This means that null hypothesis is accepted and  

heteroskedasticity is not a problem. 

 

Multicollinearity assumption 

By definition, multicollinearity is a situation in which there is an 

exact or nearly relation among two or more of the input varia-

bles (Hawking and Pendleton, 1983). If the explanatory varia-

bles are highly correlated may result into inappropriate model, 

erroneous conclusion and sometimes insignificant parameters 

with significant model (Vaughan and Berry, 2005; Hawking and 

Pendleton, 1983). The VIF is widely used to test the extent of 

multicollinearity. The variance inflation factor for    variable Xi is 

denote as VIFi and is defined by the equation VIFi = 1/1-Ri
2, 

where Ri
2 is the multiple coefficient of determination for the 

regression. There is no formal VIF cut off value for    examining 

the existence of multicolinearity but (Alauddin and Nghiemb, 

2010), recommend the VIF cut off point of 10, because a value 

greater than 10 is often used as an indication of potential  

multicollinearity problem.  

 

The model  

Suppose we denote X1=Tjanmax (0C), X2=Tfebmax (0C), X3 

=Taprmax (0C),  X4=Rfa (mm),   X5= Rgs (mm), X6 = Rdec (mm), 

X7 = Toctmax (0C), and Y represents maize yields (tonne/ha), 

then the Regression Model relating these variables may be  

written as: 

 

This system of n equations can be written equivalently in matrix 

format as:  
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To test for heteroskedasticity , we have the follo-

wing hypotheses:

: 0

: 0,  at least one of the 's is not equal to 

zero,  for i=1,2,....,7.

i i

H

H

       

 

       



0 1 1 2 2

0

1

.............

where,  through  are residuals parameters, 

 through  are the explanatory variables, 

and , 1,2,...,  is an error term.
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X X

e i k
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6 6 7 7

0

1 7

y = β + x +β x +β x +β x +β x +

β x +β x + ε                                    (1)

where,

β  is the intercept when all  x are set equal

to zero and β  through β  are regression 

coefficients population param 1

7

eters. x  thro -

ugh x  are the explanatory variables and 

ε is the random error (residual) compon -

ent.

 

Suppose n>k observations are available, and y

denotes the ith observed response and x deno-

tes the ith observation of explanatory variable x .

Then, the classical linear regression model is 

given by:

i

ij

j

i 0 1 1i 2 2i k ki

i

y = β + x +β x +........+β x

+ε   (i = 1, 2, ....., n)                                  (2)   

we can write the equation for each 

observation as a sytems of  n equations

for the classical linear regression model

(equation 2) as follows :

1 0 1 11 2 12 k 1k 1

2 0 1 21 2 22 k 2k 2

 y = β +β x +β x  +.......+ β x +  ε    

y = β +β x +β x  +.......+ β x + ε    

 .                  .        .         .          .    .        .

 .                  .        .         .          .   

n 0 1 n1 2 n2 k nk n

 .         .

y = β +β x +β x  +.......+ β x + ε  

This system of  n equations can be written

 equivalently in matrix format as :
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The minimum of  is obtained by setting the derivatives 

of  equal to zero.  

 

 

 

 

  

 

 

 

 

Multiplying both sides of equation (7) by  we have;  
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are the estimators of  , , , , , 
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The estimated coefficients of the model generate the predicted 

values given by; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Testing the significance of the model 

 

 

 

 

 

 

 

Null hypothesis 

 

= 0; none of the explanatory variables is significant. 

 

 
 

Alternative hypothesis 

 

 0, for i = 1, 2, 3, 4, 5, 6, 7; at least one of the explanato-

ry variables is not equal to zero.  

 

From analysis of variance (ANOVA) (Table 2), the Test statistic 

equal to 4.051 and its corresponding p- value (0.011) is less than 

5%, implying that there is strong statistical evidence that at 

least one of the regression coefficient in non –zero. We use t- 

test to examine the significance of each (individual) explanatory 

variable. Since the p-value for each explanatory variable is less 

than 0.05 this implies that all climatic variables are non–zero. 

Therefore the developed model is significance. 

 

y = Xβ + ε                                                            (3)   

where,

y is n×1 vectors

β is m×1 vectors and

X is n×m vectors.

where,

m = k +1 is the number of  parameters.

Let β be k×1 vector of  est


 

imates of  β, then

the estimated model (equqtion 3) may be 

written as :

y = Xβ+ e                                                              (4)

e is n×1 vector of  residues, computed as :

e = y - X β      





 

   
n T

2 T

i

i=1

                                                        (5)  

To determine the least square estimator,

 we write the sum of  squares of  the resi -

dues (a function of  β) as : 

S(β) = e = e e = y - Xβ y - Xβ




 

                  (6)

 

T TS( β )
=-2X y+2X Xβ =0

S(β)






T TX y=X Xβ                                            (7)
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T Tβ = X X X y


0 1 2 3 4

5 6 7

β ,β , β , β , β ,
Since k = 7, then β = 

β ,β ,β

    



  

 
 
 
  

0 1 2 31 2 3

4 5 6 74 5 6 7

0 1

2 3 4

5 6 7

y = + X + X + X +

X + X + X X + ε     (8)

From table 6, 23.716, 0.499,

0.289, ,

0.003, 0.004, and 0.219.

Hence equation

   

   

 

  

  

   

   

 

  

  



   

     

     

    

    

  

   

   

  

  

  

1.161, 0.006

 (8) becomes :

 

1i 2ii

3i 4i 5i

6i 7i

Equation 9  represents the model that describes

 the relationship between maize yields and climatic

 va

= + X X

X X X

X X + ε                    (9)

Y  

 



- 23.716 0.499

 

0.289

1.161 0.006 +0.003

0.004 0.219

riables. 

To be sure that the model works well and produces 

reliable results, testing its siginificance is vital impor -

tance. The significanceof  the model is tested by formu

Testing the significance of the Model

la -

ting two hypotheses. The model  hypotheses are stated  

below.
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RESULTS AND DISCUSSION 

 

We focus on results from the regression model in assessing the 

impacts of rainfall and temperature variations on maize (Z. 

mays) yields in Mbeya region. We first show the predictive  

ability of the model by examining the coefficient of multiple  

determination and p- value in relation to the significance level. 

Then, we present the projection of the impacts of rainfall and 

temperature variation on maize (Z. mays) yields in the region in 

2020 -2042 period, taking 1990- 2012 as the baseline period by 

considering the temperature increase of 1°C and rainfall  

decrease of 10%  in the prescribed period. The choice of two 

climatic variable variations in future is based on result from  

climate models for Tanzania which project that future average 

annual temperature may increase between 1°C-3°C, and the 

areas which receive uni modal rainfall seasons, could experience 

annual rainfall decrease of 5% - 15% (United Republic of  

Tanzania, 2014). 

 

Goodness of fit of the model 

The result showed that predictive model for maize (Z. mays) 

yield was statistically significant with α ≤ 0.05 (Table 2). The 

value of R2 = 0.654, indicating that 65.4% of the variation in 

maize (Z. mays) yield in Mbeya region is explained by the climatic 

variables. On the other hand, 34.6% could be attributed to other 

factors not captured by the model (Figure 2). 

Maize yields change due to separate and combined future  

impact of rainfall and temperature 

In this study, we consider the future rainfall decrease of 10% 

and 1°C increase in temperature to predict the separate and 

combine impact of both temperature and rainfall on maize  

(Z. mays) yields in Mbeya region. Lobell and Burke (2010) argue 

that time series models can extremely be useful for projections 

for the next 20-30 years. Therefore, taking 1990 -2012 as  

the baseline period, the study may predict the future influence 

of these climatic changes on maize (Z. mays) yields in 2020- 

2042 period taking the maximum projection of 30 years.  

Table 6, describes maize (Z. mays) yield change due to future 

separate and combined impact of rainfall and temperature  

variation. 

 

Future impact of rainfall variation on maize (Z. mays) yield in 

Mbeya region 

Considering the rainfall variable alone, the model indicates  that 

the coefficients of total rainfall from February to April (Rfa), 

rainfall during growing season (Rgs) and December rainfall 

(Rdec) are -0.006, +0.003 and -0.004, respectively. This being 

the case, Rfa and Rdec impact maize (Z. mays) yields negatively. 

Importantly, Rgs, rainfall during the growing season is positive 

and favours maize (Z. mays) yields in the region. Generally, the 

rainfall decrease of 10% may cause the maize (Z. mays) yields in 

Mbeya region to change between 1.5% to 2.3% in 2020 -2042 

taking 1992 -2012 as baseline period. Baijukya et al. (2016) sug-

gest that maize usually needs about 500mm -1500 mm of rain-

fall per growing season although some maize types can do well 

with as little as 250 mm of rainfall. Examining the rainfall per 

growing season from the data, rainfall decrease of 10% may 

cause the rainfall during the growing season to fall into the 

range of 577mm and 956 mm inclusive. Thus, such decrease in 

future may not have substantial impact on maize yields in pre-

scribed period, provided other factors not explained by the 

model do not change significantly.  

Figure 2. Observed maize (Z. mays) yields (OMY) and predicted maize yields 
(PMY) in tonne/ha in Mbeya region of Tanzania. 

Table 2. Analysis of variance (ANOVA) for the test of goodness of fit of the model α =5%. 

  Model Sum of squares Df Mean square F Significance 

Regression 
Residual 
Total 

  1.210  7 0.173  4.051 0.011 
 0.640 15 0.043   

 1.850 22       

Table 3. Depicts the P- values for dependent and independent 
variables for Shapiro- Wilk at α =5%. 

Variable P-Value 

Y 0.308 

X1 0.372 

X2 0.231 

X3 0.065 

X4 0.384 

X5 0.785 

X6 0.559 

X7 0.336 

Table 4. Depicts the P-value corresponding to the residual  
parameters X1 through X7 at  α =5%. 

Variable P-Value 

X1 0.972 

X2 0.154 

X3 0.164 

X4 0.631 

X5 0.549 

X6 0.590 

X7 0.572 
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Future impact of temperature variation on maize (Z. mays) 

yield in Mbeya region 

Regarding the temperature variable, the model indicates that 

the increase of 1°C in 2020-2042, maize (Z. mays) yields in 

Mbeya region may change between 2.6% to 3.6% (Table 6)  

taking 1990-2012 as baseline period. This finding is in agree-

ment with the result obtained by Mtongori et al. (2016). They 

found that increase in temperature favored maize yield in 

southern part of Tanzania for some cultivars. Importantly,  

Statistical studies have indicated that daily maximum tempera-

ture greater than approximately 30°C limit maize yields 

(Schlenker and Roberts, 2009; Lobell et al., 2011). Commuri and 

Jones (2001) found that temperatures above 30°C increasingly 

impaired cell division and amyloplast replication in maize 

Peter Batho et al. /Arch. Agr. Environ. Sci., 4(2): 177-184 (2019) 

 kernels, and thus reduced grain sink strength and yields. This 

being the case, considering the temperature data used in this 

study, the maximum temperatures in the region will not be  

beyond 30°C, implying that the future temperatures change  

in prescribed period by considering the increase of 1°C may still 

be in the limit  that is suitable and not harmful for growing 

maize. 

 

Future impact of combined variation on maize (Z. mays) yield in 

Mbeya region  

 The model results also indicate that the future combined effect 

of both temperature and rainfall may cause maize yields change 

between 2.4% and 3.5% in 2020 -2042, taking 1990 -2012 as 

the baseline period. 

Table 5. Depicts unstandardized and standardized coefficients, t and p-values and VIF of climatic variables. 

 Variable 

Unstandardized  
coefficients 

Standardized  
coefficients T Significance  

Collinearity statistics 

B Std. Error Beta  VIF 

Constant 

Tjanmax (X1) 

Tfebmax (X2) 

Taprmax (X3) 

Rfa (X4) 

Rgs (X5) 

Rdec (X6) 

Toctmax (X7) 

-23.716 8.482   -2.796 0.014  

0.499 0.110 1.242 4.521 0.000 3.273 

-0.289 0.088 -0.763 -3.280 0.005 2.349 

1.161 0.348 0.763 3.340 0.004 2.265 

-0.006 0.001 -1.220 -3.939 0.001 4.159 

0.003 0.001 1.201 2.971 0.010 7.079 

-0.004 0.001 -1.281 -3.460 0.003 5.941 

-0.219 0.088 -0.507 -2.495 0.025 1.793 

The VIF of all independent variables, that is, VIF of X1, X2, X3, X4, X5 and X6, and X7 are less than 10. This indicates the absence of  
multicollinearity and implies that variables are not highly correlated. 

Table 6. Shows maize (Z. mays) yields change in Mbeya region due to future separate and combined impact of rainfall and tempera-
ture variation. 

Years 
   OMY 

(tons/ha) 
Maize yields in % due to        
temperature rise by 10C 

Maize yields change in % due to temperature  
rise of  10C and rainfall decrease of 10% 

Maize yield change in % due 
to rainfall decrease of 10% 

1990 1.80 3.2 3.0 1.8 

1991 1.90 3.0 2.9 1.7 

1992 2.40 3.6 3.5 2.3 

1993 1.70 3.1 2.9 1.7 

1994 1.70 3.2 3.0 1.9 

1995 1.70 3.0 2.9 1.7 

1996 1.70 2.9 2.8 1.6 

1997 1.70 3.3 3.2 2.1 

1998 1.90 3.1 2.9 1.8 

1999 1.40 2.9 2.7 1.5 

2000 2.00 3.2 3.0 1.9 

2001 2.30 3.5 3.3 2.2 

2002 1.20 2.6 2.4 1.3 

2003 2.00 3.5 3.3 2.1 

2004 2.30 3.6 3.4 2.3 

2005 2.20 3.3 3.2 2.0 

2006 2.00 3.0 2.9 1.7 

2007 1.80 3.3 3.1 2.0 

2008 2.20 3.2 3.0 1.9 

2009 2.20 3.4 3.2 2.1 

2010 1.90 3.2 3.1 1.9 

2011 1.80 3.3 3.2 2.1 

2012 1.80 3.4 3.2 2.0 
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Conclusion   

 

This study has demonstrated that multiple regression model 

might provide more insight on assessing the effects of rainfall and 

temperature variation on maize (Z. mays) yields at regional level. 

Since the model has revealed that change in temperature and 

rainfall may have impacts on maize (Z. mays) yields in the region, 

the following recommendations are useful: Factors other than 

temperature and rainfall variables should be included in the  

model. This may provide a deep understanding on how various 

factors affect maize (Z. mays) yields in the region. Such variables 

could include market access, input use, and extension services 

and so on. A comparison study using different type of models 

should be applied in the study area. The result may provide solid 

standing for informing policy and decisions making process which 

may be useful to agricultural stakeholders in improving maize  

(Z. mays) yield. Since, temperature and rainfall variables have  

impact on maize (Z. mays) yields in the region, the government 

through the responsible ministry should insist in conducting  

research frequently in order to come up with suitable maize  

(Z. mays) varieties that maximize yield in the region. 
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